Push-Broom-Type Very High-Resolution Satellite Sensor Data Correction Using Combined Wavelet-Fourier and Multiscale Non-Local Means Filtering
نویسندگان
چکیده
In very high-resolution (VHR) push-broom-type satellite sensor data, both destriping and denoising methods have become chronic problems and attracted major research advances in the remote sensing fields. Since the estimation of the original image from a noisy input is an ill-posed problem, a simple noise removal algorithm cannot preserve the radiometric integrity of satellite data. To solve these problems, we present a novel method to correct VHR data acquired by a push-broom-type sensor by combining wavelet-Fourier and multiscale non-local means (NLM) filters. After the wavelet-Fourier filter separates the stripe noise from the mixed noise in the wavelet low- and selected high-frequency sub-bands, random noise is removed using the multiscale NLM filter in both low- and high-frequency sub-bands without loss of image detail. The performance of the proposed method is compared to various existing methods on a set of push-broom-type sensor data acquired by Korean Multi-Purpose Satellite 3 (KOMPSAT-3) with severe stripe and random noise, and the results of the proposed method show significantly improved enhancement results over existing state-of-the-art methods in terms of both qualitative and quantitative assessments.
منابع مشابه
Electro-Optical Design of Imaging Payload for a Remote Sensing Satellite
Remote sensing using small spacecraft arising from multi-objective economic activity problems is getting more and more developed. These satellites require very accurate pointing to specific locations of interest, with high reliability and small latency. The space borne imaging systems always attempted to achieve the highest ground resolution possible with the available technology at the given t...
متن کاملMultichannel Satellite Image Resolution Enhancement Using Dual-Tree Complex Wavelet Transform and NLM Filtering
In modern technology, A wavelet-domain approach based on dual-tree complex wavelet transform (DTCWT) and nonlocal means (NLM) is proposed for RE of the satellite images.A satellite input image is processed by DTCWT (which is nearly shift invariant) to obtain high-frequency subbands. Lanczos interpolator is used between highfrequency subbands and the low-resolution (LR) input.The subbands other ...
متن کاملA multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform
A novel methodology based on multiscale spectral and spatial information fusion using wavelet transform is proposed in order to classify very high resolution (VHR) satellite imagery. Conventional wavelet-based feature extraction methods employ single windows of a fixed size, which are not satisfactory as the VHR imagery contains complex and multiscale objects. In this paper, spectral and spatia...
متن کاملA Total Ratio of Vegetation Index (TRVI) for Shrubs Sparse Cover Delineating in Open Woodland
Persian juniper and Pistachio are grown in low density in the rangelands of North-East of Iran. These rangelands are populated by evergreen conifers, which are widespread and present at low-density and sparse shrub of pistachio in Iran, that are not only environmentally but also genetically essential as seed sources for pistachio improvement in orchards. Rangelands offer excellent opportunities...
متن کاملMultiscale Hybrid Non-local Means Filtering Using Modified Similarity Measure
—A new multiscale implementation of non-local means filtering for image denoising is proposed. The proposed algorithm also introduces a modification of similarity measure for patch comparison. The standard Euclidean norm is replaced by weighted Euclidean norm for patch based comparison. Assuming the patch as an oriented surface, notion of normal vector patch is being associated with each patch....
متن کامل